Dihexa

CognitiveAnti-Aging

A hexapeptide derivative of angiotensin IV reported to be up to 10 million times more potent than BDNF at enhancing cognitive function in animal models. One of the most discussed nootropic peptides for memory enhancement and neuroplasticity. Acts through the hepatocyte growth factor (HGF)/c-Met receptor system rather than traditional neurotransmitter pathways, representing a novel mechanism for cognitive enhancement.

Half-Life

Estimated several hours (limited pharmacokinetic data)

Half-Life Calculator →

Typical Dosage

Extremely limited human data. User-reported: 10-40 mg oral or sublingual once daily. Some report effects at lower doses. No established clinical dosing protocol. No human clinical trials completed.

Administration

Oral, sublingual, or intranasal (no established route)

Mechanism of Action

Dihexa (N-hexanoic-Tyr-Ile-(6) aminohexanoic amide) is a modified hexapeptide derivative of angiotensin IV developed at Washington State University by Dr. Joseph Harding's laboratory. It was designed to mimic the cognitive-enhancing effects of angiotensin IV and its analogue Nle1-AngIV (DIIIA), which had shown procognitive properties but required central administration. Dihexa was engineered with metabolic stability modifications (hexanoic acid modifications at both termini) for oral bioavailability and blood-brain barrier penetration.

Dihexa's mechanism centers on the hepatocyte growth factor (HGF)/c-Met receptor system, which plays a critical role in brain development, neuroplasticity, and neuroprotection. Dihexa acts as an allosteric modulator and potentiator of HGF signaling — it facilitates HGF dimerization and binding to the c-Met receptor tyrosine kinase, amplifying the downstream signaling cascade. Activated c-Met triggers the PI3K/Akt pathway (neuronal survival), the Ras/MAPK/ERK pathway (synaptic plasticity and gene expression), and the Rac1/Cdc42 pathway (cytoskeletal remodeling for dendritic spine formation).

The cognitive effects stem from enhanced dendritic spine formation and synaptic connectivity in the hippocampus — the brain region critical for learning and memory. Dendritic spines are the postsynaptic structures where most excitatory synapses form, and their density and morphology are directly correlated with cognitive function. Dihexa treatment in animal models increased spine density, enhanced long-term potentiation (LTP — the cellular correlate of memory formation), and restored cognitive function in models of dementia. The reported potency — up to 10 million times more potent than BDNF in promoting synaptic connectivity in cell culture assays — is striking but should be interpreted cautiously, as in vitro potency does not always translate to in vivo efficacy. The activation of the HGF/c-Met pathway raises theoretical concerns about tumor promotion, as this pathway is frequently co-opted in cancer for metastasis and angiogenesis, and no human safety data exists to evaluate this risk.

Regulatory Status

Not FDA approved. Research chemical status. No human clinical trials completed. Available through research chemical suppliers. Exercise significant caution.

Risks & Safety

Common: unknown (insufficient human data). Serious: theoretical promotion of tumor angiogenesis and metastasis via HGF/c-Met pathway activation (c-Met is an established oncogene), potential blood pressure effects through angiotensin-related mechanisms. Rare: unknown. Very limited human safety data. Must be used with extreme caution given the oncogenic potential of c-Met pathway stimulation. Not FDA approved.

Research Papers

1
Therapeutic Peptides in Orthopaedics: Applications, Challenges, and Future Directions.

Published: December 31, 2025

Abstract

Therapeutic peptides are emerging as promising adjuncts in the management of orthopaedic injuries, grounded in their ability to modulate molecular signaling networks central to cellular medicine. By acting on key pathways such as PI3K/Akt, mTOR, MAPK, TGF-β, and AMPK, peptides exert influence over tissue regeneration, inflammation resolution, and neuromuscular recovery. Wound-healing peptides such as BPC-157, TB-500, and GHK-Cu promote angiogenesis, integrin-mediated extracellular matrix remodeling, and fibroblast activation, whereas growth hormone secretagogues like ipamorelin, CJC-1295, tesamorelin, sermorelin, and AOD-9604 activate IGF-1 signaling and satellite cell repair. Recovery-enhancing agents such as epithalon, delta sleep-inducing peptide, and pinealon target circadian and mitochondrial regulators, and neuroactive peptides like selank, semax, and dihexa enhance brain-derived neurotrophic factor and HGF/c-Met pathways critical to neuroplasticity. Although preclinical studies are promising, there is a current lack of clinical trials. This review integrates current mechanistic insights with orthopaedic relevance, emphasizing safety, efficacy, and future directions for responsible integration into musculoskeletal care.

Related Peptides

AEDG Peptide

A tetrapeptide (Ala-Glu-Asp-Gly) identical to Epithalon's core active sequence — effectively the same compound. Studied for telomerase activation and pineal gland regulation, promoting melatonin production and potentially slowing cellular aging through telomere maintenance. Part of the Khavinson bioregulator peptide family developed at the Institute of Bioregulation and Gerontology in St. Petersburg.

Anti-Aging

Cerebrolysin

A porcine brain-derived peptide preparation containing a standardized mixture of low-molecular-weight neuropeptides and free amino acids. One of the most widely used neurotrophic treatments globally, approved in over 40 countries for stroke recovery, traumatic brain injury, and neurodegenerative diseases. Mimics the action of endogenous neurotrophic factors (BDNF, NGF, CNTF) to promote neuronal survival, synaptic plasticity, and neurogenesis.

Cognitive

CJC-1295 (no DAC)

A synthetic GHRH analogue (also called Mod GRF 1-29) consisting of the first 29 amino acids of native GHRH with four amino acid substitutions for increased enzymatic stability. Stimulates natural, pulsatile growth hormone release while preserving the body's somatostatin feedback regulation. One of the most commonly prescribed GH peptides, often combined with Ipamorelin for synergistic effects.

BodybuildingAnti-Aging

CJC-1295 + Ipamorelin

The most commonly prescribed peptide combination in anti-aging and regenerative medicine. Pairs the GHRH analogue CJC-1295 (Mod GRF 1-29) with the selective ghrelin-mimetic Ipamorelin for synergistic, pulsatile growth hormone release. Exploits two complementary signaling pathways — cAMP (GHRH) and calcium/PLC (ghrelin receptor) — to amplify GH pulses while maintaining minimal side effects.

BodybuildingAnti-Aging