P21 (P021)
A small molecule peptide mimetic derived from ciliary neurotrophic factor (CNTF). Promotes neurogenesis, protects existing neurons, and inhibits tau hyperphosphorylation — the pathological process that forms neurofibrillary tangles in Alzheimer's disease. One of the few peptides specifically targeting neurodegenerative mechanisms, representing a potential therapeutic approach for Alzheimer's disease and age-related cognitive decline.
Typical Dosage
Research/user-reported: 1-2 mg intranasal or subcutaneous once daily. No established clinical dosing protocol. Often cycled 4-8 weeks on, 2-4 weeks off.
Administration
Intranasal or subcutaneous injection
Mechanism of Action
P21 (P021) is a small molecule peptide mimetic derived from ciliary neurotrophic factor (CNTF), a neurotrophic cytokine that supports neuronal survival and differentiation. Full-length CNTF has potent neurotrophic effects but cannot be used therapeutically because it causes severe cachexia (weight loss), fever, and inflammatory responses through its systemic actions on the gp130/LIFRβ/CNTFRα receptor complex in peripheral tissues. P21 was designed to capture the neurotrophic activity while being small enough to cross the blood-brain barrier and avoiding the systemic side effects.
P21's primary mechanism in promoting neurogenesis involves upregulation of BDNF expression in the hippocampal dentate gyrus — one of the two brain regions where adult neurogenesis occurs. BDNF promotes the proliferation of neural progenitor cells in the subgranular zone, their differentiation into mature neurons, and the survival and integration of these newborn neurons into existing hippocampal circuits. Enhanced neurogenesis in the dentate gyrus is directly associated with improved pattern separation, spatial memory, and cognitive flexibility — functions that deteriorate in aging and Alzheimer's disease.
P21's second major mechanism is inhibition of glycogen synthase kinase-3 beta (GSK-3β), one of the primary kinases responsible for pathological tau hyperphosphorylation in Alzheimer's disease. Under normal conditions, tau protein stabilizes microtubules in neuronal axons, supporting axonal transport. GSK-3β hyperactivity leads to excessive tau phosphorylation at multiple serine/threonine residues, causing tau to detach from microtubules and aggregate into neurofibrillary tangles — one of the two hallmark pathologies of Alzheimer's disease (alongside amyloid plaques). By inhibiting GSK-3β, P21 reduces tau hyperphosphorylation, prevents tangle formation, and maintains microtubule stability and axonal transport. In preclinical studies with Alzheimer's model mice, P21 treatment rescued cognitive deficits, increased neurogenesis, and reduced tau pathology, suggesting disease-modifying potential rather than merely symptomatic relief.
Regulatory Status
Not FDA approved. Research compound. Preclinical studies show promise for Alzheimer's. No completed human clinical trials. Available through research suppliers.
Risks & Safety
Common: headache, nasal irritation (intranasal route), mild fatigue. Serious: very limited human safety data — based primarily on animal research, unknown long-term effects of chronic CNTF pathway activation on neural tissue. Rare: allergic reactions. All efficacy claims rely on preclinical data. Not FDA approved.
Research Papers
No research papers indexed yet. Papers are fetched from PubMed weekly.
Related Peptides
AEDG Peptide
A tetrapeptide (Ala-Glu-Asp-Gly) identical to Epithalon's core active sequence — effectively the same compound. Studied for telomerase activation and pineal gland regulation, promoting melatonin production and potentially slowing cellular aging through telomere maintenance. Part of the Khavinson bioregulator peptide family developed at the Institute of Bioregulation and Gerontology in St. Petersburg.
Cerebrolysin
A porcine brain-derived peptide preparation containing a standardized mixture of low-molecular-weight neuropeptides and free amino acids. One of the most widely used neurotrophic treatments globally, approved in over 40 countries for stroke recovery, traumatic brain injury, and neurodegenerative diseases. Mimics the action of endogenous neurotrophic factors (BDNF, NGF, CNTF) to promote neuronal survival, synaptic plasticity, and neurogenesis.
CJC-1295 (no DAC)
A synthetic GHRH analogue (also called Mod GRF 1-29) consisting of the first 29 amino acids of native GHRH with four amino acid substitutions for increased enzymatic stability. Stimulates natural, pulsatile growth hormone release while preserving the body's somatostatin feedback regulation. One of the most commonly prescribed GH peptides, often combined with Ipamorelin for synergistic effects.
CJC-1295 + Ipamorelin
The most commonly prescribed peptide combination in anti-aging and regenerative medicine. Pairs the GHRH analogue CJC-1295 (Mod GRF 1-29) with the selective ghrelin-mimetic Ipamorelin for synergistic, pulsatile growth hormone release. Exploits two complementary signaling pathways — cAMP (GHRH) and calcium/PLC (ghrelin receptor) — to amplify GH pulses while maintaining minimal side effects.